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Abstract. By using the quark-exchange formalism, the realistic Faddeev wave function and the Fermi
motion effect, we investigate the deep inelastic electron scattering from A = 3 mirror nuclei in the deep-
valence region. The initial valence quark input is taken from the GRV’s (Glück, Reya and Vogt) fitting
procedure and the next–to–leading-order QCD evolution on F p

2
(x,Q2) which gives a very good fit to the

available data in the (x,Q2)-plane. It is shown that the free neutron to proton structure functions ratio can
be extracted from the corresponding EMC ratios for 3He and 3H mirror nuclei by using the self-consistent
iteration procedure and the results are in good agreement with the other theoretical models as well as the
present available experimental data and especially the projected data expected from the proposed 11GeV
Jefferson Laboratory in the near future.

PACS. 13.60.Hb Total and inclusive cross sections (including deep-inelastic processes) – 21.45.+v Few-
body systems – 14.20.Dh Protons and neutrons – 12.39.Ki Relativistic quark model

1 Introduction

In the framework of the Standard Model, the hadrons are
composed of valence quark, sea quark and gluon [1]. In
recent years, in order to test the perturbative and non-
perturbative nature of quantum chromodynamics (QCD),
most of the experiments and theoretical works have been
focused on the studies of hadrons (mainly the proton and
neutron) structure functions (SF) at the small-x (x is the
Bjorken scaling variable) regions [2] where the sea quark
and the gluon play an important role. While the middle-x
region, i.e. 0.3 < x < 0.6 at moderate Q2 (the photon
4-momentum), has been assumed to be understood and
can be explained by the valence quark dynamics, there is
a lack of information about the nucleon structure function
in the deep-valence region, x > 0.6, at any Q2. There are
a few reasons to study the quark distribution in nucleon
at large x. The d/u quark distribution function ratio near
x ' 1 can give information about 1) the spin-flavour sym-
metry breaking in the nucleon, 2) the onset of perturbative
behavior [3] and 3) searching for the new physics beyond
the Standard Model [4] in the high-energy colliders at high
Q2, e.g., the uncertainty in the gluon distribution.

While the proton structure functions are quite well
known both experimentally and theoretically [1–3], the
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neutron structure functions should usually be extracted
from the deuterium and because of the large nuclear cor-
rection, there could be uncertainties as large as 50% in

the d/u or Fn
2 /F

p
2 '

1+4 d
u

4+ d
u

ratios [5]. The bounds value

of 1
4
≤ Fn

2

Fp
2

≤ 4 has been proposed by Nachtmann [6] for

the whole x regions. On the other hand, based on differ-
ent models, the values of 2

3
(the SU(6) symmetry) [7], 1

4

(the phenomenological and Regge considerations) [8] and
3
7
(the quarks counting rules and perturbative QCD) [9]

have been predicted as x −→ 1.

Recently, the possible use of an unpolarized tritium
target has been proposed, by using the 11GeV upgraded
beam of the Jefferson Laboratory [10], and aimed at mea-
suring Fn

2 , using the ratio of structure functions of he-

lium 3 (F 3He
2 ) to tritium (F 3H

2 ) in order to reduce the
systematic errors both in the experimental measurements
and theoretical calculations (which are model dependent).

The quark-exchange formalism (QEF) was originally
introduced by Hoodbhoy and Jaffe (HJ) to investigate the
quark distribution in the nuclear system [11,12]. Then,
QEF was applied by one of the authors (MM) to light nu-
clei [13] and nuclear matter [14] and it was reformulated to
derive the spin structure function of the three-nucleon sys-
tem as well as the proton and neutron [15]. Finally, QEF
was used as the initial condition for the QCD evolution
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equations [16] to calculate the sea quark and gluon con-
tributions to the proton structure function at the leading-
and the next–to–leading-order (NLO) levels. In most of
the above calculations we found satisfactory agreement
between our results and the available experimental data.
So we claim that the quark-exchange formalism is a good
motivation to investigate the behavior of the F n

2 /F
p
2 ratio

at the deep-valence region, i.e. x ≥ 0.6.
Several groups have paid attention to the above is-

sue [17–22] and they have used different models (mostly
based on the impulse formalism and different spectral
function approximation) to propose the F n

2 /F
p
2 ratio at

the deep-valence region. We will present their results in
this work and compare them with ours. Recently, we also
made a primary work in this direction by considering only
the quark-exchange effect in the three-nucleon system.
The result was encouraging (see, Modarres and Zolfaghar-
pour [15]).

So, the paper will be organized as follows: In sect. 2,
by using QEF, we present the valence quark momentum
distribution for the proton and neutron in the 3He and 3H
mirror nuclei (QEF is briefly explained in the appendix).
Then, the structure functions of helium 3 and tritium are
calculated by including both the quark exchange and the
Fermi motion effects. The self-consistent calculation (the
iteration procedure) of the ratio F n

2 /F
p
2 will be explained

in sect. 3. Finally, in sect. 4 we present our numerical
results, discussion and conclusion.

2 Nucleus structure function

The structure function measures the quark distribution
as a function of k+ (the light-cone momentum of the ini-
tial quark) in the target rest frame which is equivalent
to boosting the nucleus to an infinite momentum frame.
This is usually done by using an ad hoc prescription for

k0 =[(~k2 + m2)
1

2 − ε0] as a function of |~k| where m and
ε are the constituent quark mass and binding energy, re-
spectively. It has been shown that the resulting structure
function is not sensitive to this assumption [11,23].

Because of the Gaussian choice of the quark wave func-
tion in QEF, we cannot consider the full GRV’s SF, i.e.
we should ignore the sea quark and gluon contributions
to the SF. But this is a good approximation, since we
are interested in the deep-valence region and the EMC
ratios. So, the valence quark distribution at each Q2 is
related to the momentum distribution for each flavour in
the nucleon of the nucleus Ai according to the following
equation (j = p, n (a = u, d) for proton (up-quark) and
neutron (down-quark), respectively):

qj
a(x,Q2;Ai) =

∫

ρja(
~k;Ai)δ

(

x− k+
Mj

)

d~k. (1)

By performing the angular integration, we get,

qj
a(x,Q2;Ai) = 2πMj

∫ ∞

kj,a
min

ρja(
~k;Ai)kdk (2)

with

kj,amin(x) =
(xMj + εj,a0 )2 −m2

a

2(xMj + εj,a0 )
, (3)

where ma(Mj) are the quarks (nucleons) masses, εj,a0 are

the quark binding energies and ρja(
~k;Ai) are the quark

momentum distributions. Note that, regarding our Gaus-
sian choice for the nucleon wave function in terms of
quarks as illustrated in the appendix, near x = 1 the
above prescription is not working properly because the
structure function probes quark very far from their mass-
shell [11,15]. For each Q2 value, by using the fitting pro-
cedure which will be explained later on, it is possible to
calculate the corresponding values of ma and εj,a0 . Then

the target structure function FAi2 (x,Q2) can be expressed
in terms of the valence quark distribution as follows (Qa

are the quarks charges):

FAi2,ex(x,Q
2) = x

∑

a=u,d;j=p,n

Q2
aqj

a(x,Q2;Ai). (4)

Similarly to our recent work [15], in order to fix the val-

ues of ma and εj,a0 (for simplicity we drop the index j

on εj,a0 and we assume M = Mj =
Mp+Mn

2
) we apply

the above equations as well as the quark-exchange for-
malism to the proton (Ai = 1,MT = 1

2
) as our target

(obviously by considering the proton as our target there
is no exchange term, i.e. B = C = D = 0 in eqs. (A.7)-
(A.14), and we have just the direct term). In this case
for each value of b we find the pairs ma and εa0 [15] such
that we get the best fit to the valence u and d quarks dis-
tribution functions of the GRV’s proton structure func-
tion [24] (valence-SF). The GRV’s proton structure func-
tion fits the experimental proton structure function data
over the whole range of the (x,Q2)-plane very well. Fig-
ure 1 (this figure is similar to the figure we have given in
our recent work (Modarres and Zolfagharpour), ref. [15])
shows our fitted proton F p

2,v(x,Q
2) (neutron, Fn

2,v(x,Q
2))

structure function, obviously only for the valence quark,
with b = 0.8 fm (the charge radius of helium 3 and of
tritium is produced with b = 0.837 and 0.78 fm, respec-
tively. So b = 0.8 fm is a good choice) and the (ma, ε

a
0)

pairs of (120MeV, 150MeV) and (140MeV, 230MeV) at
Q2 = 4GeV2. The dotted (dash-double-dotted) curve is
that of GRV with only valence quarks. The experimental
data of SLAC [19] and NMC [25] as well as the full GRV’s
NLO structure functions for proton (dashed curve) and
neutron (dash-dotted curve) are also given for compari-
son. This figure shows that for x ≥ 0.2 we get a very good
fit to SF of GRV as well as to the available data. With the
same parameters we can calculate the corresponding 3He
and 3H structure functions which are uncertain because of
the lack of information about the neutron structure func-
tion. Obviously, in general our method fails for x → 0
(because of the fitting procedure). It is also not good as
x → 1 especially for the nucleus target, because we have
ignored the Fermi motion effect by using the leading-order
expansion in the quark-exchange formalism [11–15]. In or-
der to take into account the Fermi motion effect for tritium
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Fig. 1. The proton structure function, only with va-
lence quark, for (ma, ε

a

0) pairs of (120MeV, 150MeV)
and (140MeV, 230MeV) at Q2 = 4GeV2 and b =
0.8 fm (full curve). The pairs (120MeV, 150MeV) and
(140MeV, 230MeV) at Q2 = 4GeV2 have been chosen such
that b = 0.8 fm gives the best fit to the GRV’s valence quark
distribution (dotted curve) [24]. The dashed and dash-dotted
curves are the GRV’s full NLO proton and neutron structure
functions. The heavy full (dash-double-dotted) curve is the
GRV’s (our fitted) neutron structure function (at b = 0.8 fm).
The NMC and SLAC data [19,25] for the structure function of
proton have been also given for comparison.

and helium 3, we can work in the convolution approach
and in the harmonic-oscillator basis with the procedure
described in refs. [1] and [26] as follows. In the convolution
approach the nucleus structure function can be written as

FAi2 (x,Q2) =
∑

j=p,n

∫ ∞

x

dzfj
Ai(z)F j

2 (x/z,Q
2), (5)

where fj
Ai(z) and F j

2 (x,Q
2) are the proton or neu-

tron distribution functions in the target nucleus and the
corresponding structure functions, respectively (where in
this case, in order to calculate the Fermi motion effect
without any approximation in the nucleon SF, we use
the full GRV’s structure functions, i.e. F p

2,grv(x,Q
2) and

Fn
2,grv(x,Q

2)). In the harmonic-oscillator basis we have

fj
Ai(z) =

∑

nj ,lj

Gnj ,ljSnj ,lj (z,M, h̄ω, εnj lj ), (6)

where Gn,l, Sn,l(z,M, h̄ω, εnl), h̄ω = h̄2α2

M and εnl are the
occupation numbers, the sum of harmonic-oscillator poly-
nomials (for the present calculation they are just a Gaus-
sian function), the oscillator parameter and the single-
particle energies [26]. For the three-body system α2 =

9
2〈r2〉 , where the rms radius (〈r2〉) 1

2 is 1.95 fm and 1.7 fm

for helium 3 and tritium [27], respectively. We also set
εnl = 0, since we only intend to calculate the Fermi motion
contribution (the quark exchange is responsible for the
binding effect). In fig. 2(a) the EMC ratios of 3He to 3H,

i.e. R
3He,Fermi
EMC (x,Q2)/R

3H,Fermi
EMC (x,Q2) by considering

only the Fermi motion effect are plotted against x, where,

R
3He,Fermi
EMC (x,Q2) =

F3He
Fermi,2(x,Q

2)

2F p
2,grv(x,Q

2) + Fn
2,grv(x,Q

2)
,
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Fig. 2. (a) The EMC ratios of the structure functions of he-
lium 3 to tritium by considering only the Fermi motion effect
with the full GRV’s proton and neutron structure functions. (b)
The EMC effect in helium 3 and (c) in tritium for b = 0.8 fm.
The dotted curves are the corresponding Fermi motion effects.
The data are from ref. [25]. The dash-dotted curves are after
the second iterations. (d) The comparison of different structure
functions. The dashed (dot-dashed) curve is that of GRV for
proton, F p

2,grv
(x,Q2), ([2F p

2,grv
(x,Q2) + Fn

2,grv(x,Q
2)]/3). See

the text for details.

R
3H,Fermi
EMC (x,Q2) =

F3H
Fermi,2(x,Q

2)

F p
2,grv(x,Q

2)+2Fn
2,grv(x,Q

2)
. (7)

This figure shows that the Fermi motion is the same for
helium 3 and tritium up to x ' 0.6 and since the size of
3He is larger than 3H, then for x > 0.6 the ratio starts
to decrease, i.e. the Fermi motion effect has larger size in
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tritium with respect to helium, as one should expect. An
indistinguishable result is obtained if we use our fitted
proton and neutron SF (valence-SF) instead of those of
GRV (we explain the whole difference in fig. 5 and discuss
this replacement).

Finally, the total structure functions for helium 3 and
tritium can be written as the sum of the quark-exchange
part, eq. (4) (obviously without the direct term, i.e. by
considering A = 0 in eqs. (A.7)-(A.14), and the Fermi
motion term, eq. (5):

FAi2 (x,Q2) = FAi2,ex(x,Q
2)|A=0

+ FAi2,Fermi(x,Q
2). (8)

We hope in our future works to omit this approximation
by calculating the Fermi motion effect in the framework of
QEF and the Faddeev wave function for the three-nucleon
system (note that in this work, still the exchange term
is calculated approximately because of the leading-order
expansion of χ(~p, ~q ) we discussed earlier [15]).

3 Self-consistent treatment of Fn
2/Fp

2

By defining the EMC-type ratios for the structure func-
tions of helium 3 and tritium (as the one we did for the
Fermi motion effect) i.e.

R3He
EMC(x,Q

2) =
F

3He
2,ex (x,Q

2)|A=0

2F p
2,v(x,Q

2) + Fn
2,v(x,Q

2)

+
F

3He
2,Fermi(x,Q

2)

2F p
2,grv(x,Q

2) + Fn
2,grv(x,Q

2)
(9)

and

R3H
EMC(x,Q

2) =
F

3H
2,ex(x,Q

2)|A=0

F p
2,v(x,Q

2) + 2Fn
2,v(x,Q

2)

+
F

3H
2,Fermi(x,Q

2)

F p
2,grv(x,Q

2) + 2Fn
2,grv(x,Q

2)
, (10)

where we have used the appropriate neutron and proton
structure functions for the quark exchange and Fermi mo-
tion parts of each nucleus structure function (i.e., in or-
der to calculate the numerator and denominator of the
above ratios with the same approximation). We can also
use the valence-SF in EMC ratios of the Fermi motions as
well. Then we can calculate the above EMC ratios by us-
ing the fitted (F p

2,v(x,Q
2), Fn

2,v(x,Q
2)) and the full GRV’s

(F p
2,grv(x,Q

2), Fn
2,grv(x,Q

2)) proton and neutron struc-

ture functions (note that the fitted and the GRV’s struc-
ture functions are very similar for x > 0.25), the convo-
lution approach and the exchange part of quark-exchange
formalism. In figs. 2(b) and (c) we have plotted these ra-
tios for different values of b (fm). The dotted curves are the
corresponding pure Fermi motion structure functions (ob-
viously the differences between the full and dotted curves
show the exchange parts of the quark-exchange model). So
the quark exchange has sizable contribution up to x ≈ 0.63

and it is larger for the helium 3 with respect to the tri-
tium, as one should expect [15]. The HERMES helium 3
data are taken form ref. [25] at Q2 ' 7GeV2. We should
point out here that: i) The quoted data are the combi-
nations of helium 3, deuterium and proton cross-sections

(see Ackerstaff et al. [25] (R =
F

3He
2

Fd
2
+Fp

2

)). ii) The structure

function of helium 3 has been calculated by using various
theoretical approximations and parameterizations which
are valid for x < 0.1, especially the radiation corrections
(see Ackerstaff et al. [25], p. 390, for details). So more ex-
perimental data is needed for a close comparison with the
theoretical calculations. In order to clarify this point, in
fig. 2d we have plotted the deuterium structure function
data, the deuterium plus proton structure function data,
our EMC result on helium 3 (the experimental EMC data)
multiplied by the deuterium plus proton structure func-
tions data. Now there is a very good agreement between
our EMC result and the present available data, especially
as we move to the larger x (there is no data for x > 0.4).
In this region the EMC ratios are not very sensitive to the
different values of b.

Now by dividing the above EMC ratios we can define
the following equation:

R
3He/3H
EMC (x,Q2) =

R3He
EMC(x,Q

2)

R3H
EMC(x,Q

2)
= R3He/3H(x,Q2)

×
[

1 + 2C(x)Fn
2,grv(x,Q

2)/F p
2,grv(x,Q

2)

2 + C(x)Fn
2,grv(x,Q

2)/F p
2,grv(x,Q

2)

]

(11)

with

R3He/3H(x,Q2) =
F3He
2 (x,Q2)

F3H
2 (x,Q2)

, (12)

where we have introduced the unknown correction func-
tion C(x) to the GRV’s neutron structure function
Fn
2,grv(x,Q

2). If the proton and neutron structure func-
tions in A = 3 nuclei were not dramatically different then

one should expect that R
3He/3H
EMC (x,Q2) ' 1.

Equation (13) can be solved for the neu-
tron to proton structure functions ratio, C(x) =
Fn
new,2(x,Q

2)/F p
2,grv(x,Q

2), in terms of the EMC ratio,

R
3He/3H
EMC (x,Q2), which directly yields

C(x) = Fn
new,2(x,Q

2)

F p
2,grv(x,Q

2)

=
2R

3He/3H
EMC (x,Q2)−R3He/3H(x,Q2)

2R3He/3H(x,Q2)−R3He/3H
EMC (x,Q2)

. (13)

Equations (4)-(10) are coupled to eq. (13) in terms of the
“new neutron structure function”. So, for iteration, we
consider the following structure functions as our input and
we start from eq. (4):

F p
2,grv(x,Q

2)→ F p
2,grv(x,Q

2),

Fn
2,grv(x,Q

2)→ C(x)Fn
2,grv(x,Q

2),

F p
2,v(x,Q

2)→ F p
2,v(x,Q

2),

Fn
2,v(x,Q

2)→ C(x)Fn
2,v(x,Q

2). (14)
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Fig. 3. (a) The ratios of structure functions of helium 3 to
tritium (eq. (12)) for b = 0.8 fm (full curves). The dashed curve
is after second iteration with b = 0.8 fm. The sun-burst points
are from refs. [10,20] (see the text for details).

(if we use the valence-SF in the EMC ratios of the Fermi
motion effect, then obviously we only make the third and
the fourth input replacements). With the above struc-
ture functions we again calculate the quark-exchange and
Fermi motion effects, EMC ratio etc., in order to find an-
other correction function C(x) and we continue this pro-
cedure until the iteration converges.

4 Result, discussion and conclusion

In fig. 3 the ratios of the structure functions of helium 3 to
tritium (eq. (12)) are plotted for b = 0.8 fm (full curves).
The dashed curve is the same ratio with b = 0.8 fm af-
ter the second iteration. The sun-burst points are the ex-
pected ratios that have been estimated by using the kine-
matics of the proposed 11GeV Jefferson Laboratory ex-
periment [10,20]. There is remarkable agreement between
the estimated prediction [10,20] and the present calcula-
tion. The ratios remain the same if we use the valence-SF
instead of GRV’s SF in the Fermi motion effect.

The EMC ratios (eq. (11)) are plotted in fig. 4. In gen-
eral, since 1) we have taken into account all of the proper-
ties of the structure functions of proton, neutron, helium 3
and tritium and 2) the proton and neutron structure func-
tions are not dramatically too different (as is seen from

fig. 1), it is expected that R
3He/3H
EMC (x,Q2) ' 1. However,

this figure shows that the calculated EMC ratios have a

very small variation fromR
3He/3H
EMC (x,Q2) = 1 and this de-

viation increases as x→ 1 (which is mostly due to Fermi
motion effect). A similar behavior is also seen in other
calculations in which the impulse approximation has been
used [20]. Again the dashed curve is the result of second
iteration for b = 0.8 fm.

Finally, in fig. 5 the calculated neutron to proton struc-
ture functions ratios have been plotted for b = 0.8 fm. The
large scale of this graph is also given for the deep-valence
region. The third iteration is not distinguishable from the
second one. The limiting values of above ratio for x = 1
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Fig. 4. The EMC ratios for b = 0.8 fm. The dashed curve is
after second iteration with b = 0.8 fm.
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Fig. 5. The neutron to proton structure functions ratios
(eq. (13), see the text for more details). The data are from
Whitlow et al. [19], Melnitchouk and Thomas [18], Bodek et
al. [17] and NMC [25]. The dashed curve is with the valence-SF
in the EMC ratios of the Fermi motion effect.

(as it was discussed in the introduction) from different
models are shown in the left side of this figure by arrows.
The data are from refs. [17–19,25]. The iteration approxi-
mately converges after the third one. Our results are very
closed to the present available data in the whole x region.
The dashed curve is the neutron to proton structure func-
tions ratio by using the valence-SF in the EMC ratios of
the Fermi motion effect. As one should expect there is a
small difference in the small-x region with respect to the
full curve and it shows that the valence quarks are mainly
responsible for the large-x region (x > 0.3). We observed
that the variation of b, i.e. the nucleon size, only affects our
results in the deep-valence region. Our calculated neutron
to proton structure functions ratios are also in good agree-
ment with the present theoretical calculation in which dif-
ferent models and approximations have been used [17–22].

In conclusion, we have calculated the helium 3 and
tritium structure functions ratios in the framework of the
quark-exchange model. We have treated u and d quarks
as well as proton and neutron explicitly in our formalism
and we have found satisfactory results compared to the
present available data and others’ theoretical models. In
general, it is not correct to calculate the Fermi motion
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and quark-exchange effect with different nucleon struc-
ture functions, as we did in present work. But, since we
could not calculate the quark-exchange effect with the full
GRV’s structure functions, we used only the valence-SF
of GRV in quark-exchange formalism as input. So, as we
pointed out in the text before, we also divided the quark-
exchange effect to the valence-SF to get the corresponding
contribution of the EMC effect. Because, we should use the
same approximation in the numerator and denominator of
EMC ratio (in general, the numerator and denominator of
a ratio has to be calculated with the same approximation,
otherwise the ratio will be under- or overestimated).

Our results show that the quark-exchange effect is
much larger in the three-nucleon system than previously
thought [20]. We found that the EMC ratios of helium 3
and tritium are very similar for x < 0.7. Now, if this
phenomenon also happens for heavier nuclei one can con-
clude that in general the “through” EMC ratios of the nu-
clei, i.e. FAi(x,Q2)/(ZiF

p
2 (x,Q

2) + NiF
n
2 (x,Q

2)) would
be roughly the same for all nuclei. This can also be ex-
plained by the saturation properties of nuclear forces [28].
However, we should point out that the three-body systems
lie far from the saturation region of nuclear forces and we
hope we could investigate this matter in our future works.

We can improve our calculation by i) treating the
Fermi motion effect explicitly in the quark-exchange
framework, i.e. calculating the leading-order expansion we
made in the appendix [11–15] as well as using other choice
of nuclear wave functions which have been calculated with
the new nucleon-nucleon potentials [29], ii) evaluating the
connected three-body diagram which has been ignored in
the present calculation [15] and finally, iii) since for the nu-
clei one could have the non-vanishing structure function
for x larger than one [30,31], we can measure and calculate
this behaviour by considering the quark-exchange effect in
nuclei with a full realistic nuclear wave function.

MM would like to thank the University of Tehran for support-
ing him under the grants provided by its Research Council.

Appendix A. Quark-exchange formalism

Let us start with a brief summary of the quark-exchange
formalism. We take the nucleon states to be composed of
three valence quarks [11,15],

|α〉 = Nα† |0〉 = 1√
3!
Nα
µ1µ2µ3

q†µ1
q†µ2

q†µ3
|0〉, (A.1)

where α designate the nucleon states { ~P ,MS ,MT } and

µ stand for the quark states {~k,ms,mt, c}, with the con-
vention that there is a summation on the repeated indices

as well as integration over ~k. q† (Nα†

) are the creation
operators for quark (nucleon) and N α

µ1µ2µ3
are the totally

antisymmetric nucleon wave functions, i.e.

Nα
µ1µ2µ3

= D(µ1, µ2, µ3;αi)

×δ(~k1 + ~k2 + ~k3 − ~P )φ(~k1,~k2,~k3, ~P ). (A.2)

The D(µ1, µ2, µ3;αi) depend on the Clebsch-Gordon co-
efficients Cj1j2j

m1m2m and on the color factor εc1c2c3 ,

D(µ1, µ2, µ3;αi) =
1√
3!
εc1c2c3

1√
2

∑

s,t=0,1

C
1

2
s 1

2

msσmsMSαi

×C
1

2

1

2
s

msµmsνmsC
1

2
t 1

2

mtσmtMTαi

C
1

2

1

2
t

mtµmtνmt . (A.3)

The φ(~k1,~k2,~k3, ~P ) are the nucleon wave functions in
terms of quarks and we write them in a Gaussian form
(b ' nucleons radius):

φ(~k1,~k2,~k3, ~P ) =

(

3b4

π2

)

3

4

× exp

[

− b2
(

(k21 + k22 + k23)

2
+
b2P 2

6

)]

. (A.4)

We can define the nucleus state based on the nucleon
creation operators, i.e.

|Ai = 3〉 = (3!)−
1

2χα1α2α3Nα1
†Nα2

†Nα3
† |0〉, (A.5)

where χα1α2α3 are the complete antisymmetric nuclear
wave functions which should be interpreted as the center-
of-mass motion of the three-nucleon system. They are
taken from the Faddeev calculation with the Reid soft
core potential [15,32]. According to Afnan et al. [20], the
choice of the nucleon-nucleon potential does not affect the
EMC results. However, we will investigate this matter in
our future works.

The quark momentum distribution with fixed flavour
in a three-nucleon system is defined as,

ρµ̄(~k;Ai) =
〈Ai = 3|q†µ̄qµ̄|Ai = 3〉
〈Ai = 3|Ai = 3〉 , (A.6)

where the sign bar means no summation on mt and in-

tegration over ~k in the µ indices. By using the above
definition, we can calculate the quark momentum distri-
bution for each flavour. In the above equation we use,
χ(x, y, cos θ), the Fourier transform of the nucleus wave
function (as we said before it is taken from the solution
of the Faddeev equation with the Reid soft core inter-
action). We only consider the leading-order expansion in
χ(~x, ~y ) [11–15].

Finally, we get the resulting quark momentum distri-
bution as follows [15]:

ρ
3He(k)=

[

2A(k) +
2

9
B(k) +

4

9
D(k)

] [

1 +
9

8
I
]−1

, (A.7)

ρ
3H(k)=

[

A(k)+
1

9
B(k)+

4

9
C(k)− 2

9
D(k)

] [

1+
9

8
I
]−1

,

(A.8)

where (I is the contribution of the nucleus wave function
to the quark-exchange momentum distribution [11])

A(k) =

[

3b2

2π

]

3

2

exp

[

−3

2
b2k2

]

,
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B(k) =

[

27b2

8π

]

3

2

exp

[

−3

2
b2k2

]

I, (A.9)

C(k) =

[

27b2

7π

]

3

2

exp

[

−12

7
b2k2

]

I,

D(k) =

[

27b2

4π

]

3

2

exp
[

−3b2k2
]

I, (A.10)

and obviously we have

∫

ρ
3H(k)d~k =

1

2

∫

ρ
3He(k)d~k = 1. (A.11)

Similarly, we can find the up- and down-quark distribu-
tions (we assume SU(6) symmetry):

ρu(k)=

[

2A(k)+
2

9
B(k)− 16

27
C(k)+

28

27
D(k)

] [

1+
9

8
I
]−1

,

(A.12)

ρd(k)=

[

A(k)+
1

9
B(k)− 20

27
C(k)+

26

27
D(k)

] [

1+
9

8
I
]−1

,

(A.13)

where
∫

ρd(k)d~k =
1

2

∫

ρu(k)d~k = 1. (A.14)

See Modarres and Zolfagharpour [15] for details.
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